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EXECUTIVE SUMMARY

This study has investigated methods of SBS threshold reduction for long pulse and quasi-cw lasers.
Two SBS threshold reduction techniques were studied: the so-called "loop" and "ring" schemes. These
techniques have also been investigated recently at TRW and at Imperial College, London.

This study was carried out by using a Cr,Tm,Ho:YAG laser source and an approximately 2-m path
length ring or loop, with CS2 as the active medium. We developed a theoretical model for the transient
and steady state behavior of the loop and ring systems, taking into account geometrical aspects such as the
role of overlapping Gaussian beams and gain enhancement resulting from speckle inhomogeneity. We
then tested the theory and characterized the performance of the two systems.

We identified one of the key parameters in these ring and loop schemes as the ratio of longitudinal
mode spacing to Brillouin bandwidth. In our experiments this parameter had a value of -13. This is closer
to the ratio that will apply to the planned APEX experiments than has been the case in experiments
carried out elsewhere. APEX is an experiment being conducted at TRW under a contract with NRL to
demonstrate continuous wave optical phase conjugation with a high-power chemical laser.

The loop and ring schemes were investigated experimentally by using a new compact arrangement in
which the loop or ring was formed with two lenses, a high reflectivity mirror and a second mirror, or
beamsplitter. This new arrangement was more compact and simpler to align than the conventional
scheme, but it was equivalent for studying the physics of the two schemes.

The transient and steady state behavior was studied for each scheme, and the beam quality was
investigated for both unaberrated and aberrated beams. The transient regime was characterized by
measuring the "onset energy," the amount of energy incident on the cell before SBS starts. This was
found to be relatively constant, irrespective of whether we were close to threshold or well above
threshold. The steady state regime was characterized by the power transmitted through the loop or ring
(usually taken to be the threshold power), and again this was usually constant during a pulse. The loop
and ring data could be directly compared with conventional single-focus SBS and two-focus SBS.

In the case of the loop, the onset energy was 1.5 to 2 mJ and the threshold power was 7 kW. This
compares with values of 4 mJ and 22 kW for single-focus SBS and 3 mJ and 15 kW for two-focus SBS.

There was some shot-to-shot variation in the loop onset energy but little variation in the steady state
power threshold. For certain loop lengths the steady state behavior was constant and reproducible, and at
other lengths (differing by a few cm) the transmitted power oscillated with a 50-ns period. This was due
to longitudinal mode effects and was consistent with theory.

When optimized, the amount of threshold reduction of the loop was close to the value calculated from
theory, giving support for the theory's validity. Similarly, the value of the onset energy was consistent
with theoretical calculations.

When the input beam was diffraction limited, the loop produced a beam with higher fidelity than
conventional SBS, with a Gaussian profile in the near and far field. Beam quality was also measured with
a severely aberrated beam. When the aberrator was double passed by a conventional mirror, the beam was
at least 5 times diffraction limited, with a complex speckle pattern in the far field. The loop scheme
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produced a backscattered beam with 80% of the far-field energy in a Gaussian lobe close to the
divergence of the unaberrated input beam. The remaining 20% of the energy was in a highly divergent
"halo." The overall fidelity was approximately 60%.

For geometrical reasons, the ring scheme was set to be 2-m long, and the laser cavity was realigned
so that its round-trip transit time matched the transit time of the ring. The ring had an onset energy of 1.8
mJ and a threshold power of 3.5 kW, compared with 5.5 mJ and 23 kW for single-focus SBS and 4 mJ
and 15 kW for two-focus SBS, measured at the same time.

There were large shot-to-shot fluctuations in the power threshold, with the threshold sometimes a
factor 3 to 5 greater than the minimum observed value. Care was taken to eliminate factors such as
changes in the laser's spectrum or other characteristics. The phenomenon was attributed to sub-
wavelength shot-to-shot variations in the length of the ring, which led to variations in the power
threshold. The beam quality studies gave results almost identical with those observed for the loop.

A theory was developed for the ring to include longitudinal mode pulling. This phenomenon causes
the radiation in the ring to be detuned from the Brillouin-shifted frequency. The maximum possible
detuning depends on the transmission around the ring and the ratio of longitudinal mode spacing to
Brillouin linewidth. In our case, this was 1.7 Brillouin linewidths. The theory showed that this detuning
would cause the threshold to increase by a factor 4 compared with the case of zero detuning, which is
consistent with our experimental results.

Recent observations by other workers have shown less variation in the transmitted power than
predicted by our theory; they also showed that if aberrations were present in the ring, threshold reduction
still took place.

A "ring" has all the attributes of a "loop" and the extra attribute that the pump and Stokes radiation
are assumed to reproduce their spatial structure after each round trip. This one assumption leads to all the
differences in the mathematical models for the two schemes. It is clear that this assumption is not valid if
there are aberrations in the ring. These aberations can either be inserted deliberately or the result of many
components with imperfections in the beam path. When these aberrations break the symmetry of the ring,
it will behave as a "loop," i.e., a separate four-wave mixing grating will appear. This grating is spatially
identical to the conventional SBS grating in a true ring.

It is possible that other workers' experiments benefited from this phenomenon. The theoretical
threshold of a loop is within a factor two of a ring, but the loop threshold is insensitive to small changes in
cavity length or to aberrations in the loop. In contrast, a ring is equivalent to a laser resonator with a very
narrow gain bandwidth and will have an output field best described by spatial modes. These will be
greatly affected by aberrations, and the cavity's threshold depends on the precise cavity length.

If fluctuations in threshold power are observed in the APEX experiments, two possible solutions are
suggested. An aberrator may be inserted in the ring to make it behave as a loop. If this approach fails, the
length of the ring may be precisely controlled, for example, by using a servo loop to minimize the SBS
threshold.
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METHODS FOR SBS THRESHOLD REDUCTION

INTRODUCTION

The scaling of lasers to high power often causes a deterioration in the output beam quality. One
approach to solving this problem is to use stimulated Brillouin scattering (SBS) phase conjugation
techniques [1]. Efficient SBS is routinely achieved in the visible and near-infrared (IR) simply by
focusing a laser into a Brillouin cell, but it is more difficult to achieve at longer wavelengths for several
reasons. There is an inherent problem with many materials having weak absorption bands in the IR (e.g.,
as a result of overtones in the C-H vibration mode). Phonon lifetimes increase with the square of the
wavelength, so the scattering process takes longer to become established. Another consideration is that
experiments to date have used short, high-intensity pulses. Long-pulse or CW lasers will have much lower
intensities and require efficient phase conjugation at lower powers.

We carried out a series of experiments by using a 2-jim Ho:YAG laser that gave an output pulse
approximately 200-ns long with a repetition rate of 1 Hz. This was more convenient than the previous HF
laser source that had a repetition rate of 1 shot per 15 minutes. It was also more relevant than a Nd:YAG
laser, which has an output at 1.06 gim and usually produces either a 10-ns long pulse or a 2-ms pulse
consisting of a collection of independent spiky relaxation oscillations.

In principle, SBS is characterized by a threshold intensity and a slope efficiency of 100%. In practice
however, lower efficiencies are often observed because of other (usually absorption-related) processes. It
arises as a result of Brillouin amplification of noise. Threshold depends on the spontaneous noise level
and on the Brillouin gain, which depends exponentially on the input intensity and the interaction length.
Conjugation occurs because noise conjugate to the input experiences enhanced gain. The key to
improving the efficiency of a phase conjugate mirror is reducing the threshold and maintaining the slope
efficiency and fidelity.

One approach to threshold reduction is to use long interaction lengths [2, 3]. This can be done by
using a light pipe filled with the active liquid. However, this requires suitable materials to provide total
internal reflection and a laser with a long coherence length [1]. Alternatively, one can repeatedly refocus a
beam through a series of Brillouin cells, with the transit time between foci matching the one-way transit
time of the laser cavity [4]. This effectively increases the interaction length without the need for total
internal reflection or long coherence lengths.

Alternative approaches get away from the concept of simply increasing the effective Brillouin gain.
These techniques are similar to techniques used in photo-refractive phase conjugation [5].

Self-pumped four-wave mixing involves placing an SBS cell in a separate cavity [6]. When an input
pump is directed into the cell, Brillouin gain causes the cavity to resonate. The counterpropagating cavity
beams can then produce phase conjugation by four-wave mixing. This method can be efficient and has a
low threshold, but it requires that the Brillouin cavity be indirectly matched to the laser cavity. Even when
this is met, chaotic instabilities that may disrupt its performance can develop [7, 8].

Manuscript approved September 4, 1993.
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Methods for SBS Threshold Reduction

The loop scheme [9] is a more promising scheme. In this, the input. beam is passed through a
Brillouin cell and brought around. It is then passed through a second time to overlap the beam on the first
path. In the overlap region, four-wave mixing can take place and low threshold backscattering is
observed.

Finally recent studies have been made of a ring scheme [10] in which the Stokes output of the
Brillouin cell is fed back to reseed the input. This has been reported as having an even lower threshold
than the loop scheme.

In this report, we consider both the loop and the ring schemes. We first discuss qualitatively the
features of the loop scheme and the mechanism responsible for its behavior. Then we review the
published literature on the loop scheme, introduce a theory of the loop-SBS interaction, discuss phase
conjugation by SBS, and present a steady-state theory,

We then discuss the theory of the ring scheme and compare it with the loop scheme. Finally we
describe our experimental setup, which can be used for either the loop or the ring schemes, The discussion
includes alignment and the role of various critical parameters. We present energy, intensity, and conjugate
fidelity data, and compare these results with theoretical predictions.

REVIEW OF THE LOOP SCHEME

Figure 1 is a schematic layout of a loop. An input beam A l traces its path around the loop and a back-
scattered beam emerges as A2. In the overlap region, a grating us is driven by interference between Al
and A4 and between A2 and A3. Conventional Brillouin amplification may also take place, but the
dynamics of the loop can be understood by concentrating on the role of the four-wave mixing grating us
alone.

Al ul Us u3 A3

Fig. 1- Simple loop showing an input beam A 1 tracing its path

around the loop and emerging as A3 after a loop transit time. The

input beam is partly scattered by an initially noise-generated acoustic

grating us to form A4 and after a loop transit time A2 . In the overlap

region, the grating us is driven by four-wave mixing interference

between A 1 and A4 and between A2 and A3. Conventional Brillouin

amplification may also take place as indicated by gratings ul and U3.
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An incident field Al is partially scattered by an initially noise-generated us to form A4 and partially
transmitted. The two fields then pass around the loop in opposite directions and, after a loop transit time,
form beams A3 and A2. The interference fringes formed by these two beams amplify the acoustic wave us
and scatter more radiation from A3 into A2. If the amplification rate exceeds the natural damping rate, the
acoustic wave will grow until pump depletion limits it. Once the acoustic wave is present, the scattering
of Al at time t ensures that interference fringes are formed by A2 and A3 at a later time over the whole of
the interaction volume, and these will reinforce us. Thus there is no need to rely on spontaneous noise to
act as a continuous input signal, as is the case with conventional SBS.

The four-wave mixing grating transfers radiation from the pump to the conjugate in two possible
ways: Al can be scattered on the first transit through the cell and then pass around the loop at the
Brillouin- shifted frequency, or it can pass around the loop at the input frequency and then be scattered on
the second pass. There is interference between these two paths and the output is a maximum when the
phase difference AO = (k2 -kl)L= 2n7r. When the phase difference is not optimized, the threshold
increases and the output frequency is pulled from the center of the Brillouin gain curve. This is because an
imaginary part of the Brillouin gain (a Brillouin-induced refractive index) is away from line center, and
this changes the effective phase difference around the loop.

It is not clear that the loop itself has an intrinsic mechanism that ensures that phase conjugation
occurs. Conventional Brillouin amplification produces phase conjugation because the conjugate
experiences enhanced gain compared with the nonconjugate and Brillouin amplification may take place in
the loop. The Brillouin shift depends on the intersection angle between the signal and the pump, so the
degree to which Brillouin amplification occurs will depend on this intersection angle.

The first investigation of a loop scheme was carried out by Odintsov and Rogacheva in 1982 [9].
They used a loop in which the overlapping beams were confined in a 5-cm light guide and reported low-
threshold, high-fidelity phase conjugation. Their threshold was reduced by about a factor 10 compared
with conventional SBS, and it corrected for an aberrator that increased the input divergence by a factor
10. They also described a simple theory that identified the mechanism as having an "absolute instability"
as a result of the role of feedback in the four-wave mixing process.

The implication of an "absolute instability" is that the output grows exponentially in time rather than
exponentially in space as in conventional SBS, a "convective instability." Initial noise is required at the
start of both types of instabilities. Once an absolute instability has started to develop, however, no further
noise is required, and the final output level is independent of the initial noise.

In 1983 Cronin-Golomb et al. [5] discussed various self-pumped schemes for photorefractives,
including loops and self-pumped cavities. Subsequently Bel'dyugin and coworkers [11] investigated
various loop schemes with, for example, amplifiers inside the loop, and other nonlinearities such as
thermal gratings being responsible for the coupling.

Zaskal'ko et al. [12] studied the loop scheme by using a 70-ns Nd:YAG laser pulse with a collimated
beam passing through the cell filled with CS2 or acetone. The threshold was reduced by a factor 2.5
compared with conventional SBS and had a slope efficiency of 75%. At small angles the reflectivity
dropped from 70% to 20-30%. Here, the reflectivity developed modulations, a phenomenon that was
attributed to forward Brillouin scattering. The beam quality for the loop scheme was found to be better
than when normal Brillouin backscattering took place.
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Methods for SBS Threshold Reduction

Anikeev et al. [13] studied the fidelity of a loop by using a collimated pump beam. They observed a
factor 5 reduction in threshold but noted that the backscattered beam had twice the divergence of the
input. In general, they found that the spatial structure of the pump was not replicated in the backscattered
beam unless some form of discrimination was used to enhance its conjugate properties. This was achieved
by inserting an aberrator before the loop, which led to gain enhancement in the conjugate beam. However,
the conjugate beam was still imperfectly conjugated. Another method that they suggested was to focus the
beam transmitted by the loop into an SBS cell. If the input consisted of a long, low-power input beam
with a short high-power leading edge, then the conventional SBS cell would seed the loop for the rest of
the input pulse.

The problem of beam quality was investigated by Zozulya et al. [14] who developed a two-
dimensional analysis to treat the problem of the crossing beams. They projected the crossing beams onto a
coordinate system with the beams propagated orthogonally. The solution obtained was inconsistent with
the one-dimensional analysis. They argued that the latter was invalid [15] and made suggestions for
improving beam quality. These included physically rotating the beam by 900 between the first and second
transit through the loop, and demagnifying the beam so that its diameter is reduced on the second transit
compared with the first. They developed this further [16] to quantify the threshold and fidelity as a
function of demagnification coefficient.

Eliseev et al. [17] carried out some experiments in which the loop scheme was implemented with
beam demagnification. A collimated (1.5-J) beam was passed through the active medium and then
reduced in diameter by a factor ax by using a concave mirror before overlapping with the first beam. They
measured the fidelity by looking at the reconstruction of an image. The fidelity was found to be highest
when ox - 0.6-0.7 and was noticeably smaller when ox was close to 1 or 0.1, matching predictions. They
observed a maximum reflectivity of 30-40% and a slope efficiency of less than 100%, contrary to the
simple one-dimensional theory.

Anikeev et al. [ 18] examined another factor affecting beam quality. For a given loop length, there is a
phase difference between light that travels the path at the input wavelength and the conjugate beam
returning along the same path. The threshold for the loop is a minimum when the phase shift is an integer
multiple of 2ic. A nonconjugate beam will travel around a different path and hence have a different phase
difference. If the loop is operated so that the phase difference is close to resonance (i.e., the threshold for
the conjugate is close to maximum), a nonconjugate path that has a lower threshold may exist for the
backscattered beam. Experimentally this was detected by measuring a modulation that results from
beating between the conjugate and this nonconjugate component.

Zhanuzakov et al. [19] returned to the one-dimensional analysis to calculate the steady-state
reflectivity of a loop, noting the difficulties of the more encompassing two-dimensional analysis. They
neglected Brillouin amplification, assuming a large intersection angle between the overlapping beams.
Among their conclusions, they noted that the maximum possible reflectivity depended on the phase
difference AO between the signal and Stokes beams in their transit around the loop, with the maximum
reflectivity depending on cos2 AO. They predicted highly nonlinear reflection coefficients with many
different frequency components, particularly in the case of long loop lengths. They later investigated [20]
whether the steady-state backscattering in a loop was stable, and concluded that instabilities will develop
when the steady-state threshold is exceeded by a factor 3 to 6.

In some circumstances, modulation of the backscattered and transmitted beams was observed. This
was suggested as being due to forward Brillouin scattering. Andreev et al. [21] modeled this problem and
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Scott, Whitney, and Duignan 5

noted that this forward SBS may occur. However, depending on the phase shift around the cavity, this
need not greatly reduce the loop efficiency.

The Brillouin interaction is driven by the moving interference fringes in the active medium. Andreev
et al. [22] calculated the effect of the stationary interference fringes and concluded that they increased the

threshold intensity, reduced the fidelity, and hindered the establishment of a steady state regime.

Nikolaev and Odintsov [23] studied the performance of a loop in which the overlap region was
formed by two beams that were nearly counter-propagating rather than nearly copropagating as in the
usual geometry. They found that this reduced the threshold by nearly a factor 2 compared with the usual
loop. They also varied the loop length and noted that the threshold varied by 30% when the loop length
was changed by 3 cm, matching the theoretical prediction that the threshold depends on the phase
difference AO.

Eliseev and Tikhonchuk [24] analyzed the performance of a ring in terms of eigenmodes and used
this to assess phase conjugate beam quality for various degrees of compression. A detailed review of
much of the recent Russian analytical work, particularly the two-dimensional analysis, has recently been
published by Tikhonchuk and Zozulya [25].

REVIEW OF THE RING SBS SCHEME

The ring scheme has been investigated by fewer workers. Wong and Damzen [10] described some
studies based on both the loop and ring geometries. The ring geometry, previously proposed by Shakir
[26] provides an arrangement whereby the transmitted beam is fed back to overlap the initial beam in the
Brillouin medium. They carried out a steady-state analysis to show that a ring would have high efficiency
and a low threshold. They also modeled the transient behavior and found good agreement between theory
and experiment for the ring. The threshold was reduced by a factor 1.4, and the reflectivity increased
much more rapidly than with conventional SBS. When they went to the loop, they had much poorer
agreement between their model and experiment.

The approach we have taken has been determined partly by the components available and partly by
the desire to investigate a compact, low-threshold system for a multiple transverse-mode laser with an
overall coherence length of -50 cm. This latter requirement restricts us to using focused beams, with
consecutive foci separated by a transit time matching an integral multiple of the transit time of the laser
cavity to ensure mutual coherence. We included a second intermediate focus in the loop for convenience
of alignment, and the analysis includes this auxiliary Brillouin amplifier. We also reformulated the one-
dimensional analysis to deal with the loop problem in a way to make it more directly comparable with the
experiments, particularly including the Brillouin amplifier and the effect of partial overlap.

THEORY OF THE LOOP-SBS INTERACTION

We analyze the behavior of a loop-SBS mirror, paying particular attention to parameters that can be
influenced by experiment. We experimentally investigate the case of partially overlapping focused beams
that cross at a small angle and use a uniform one-dimensional plane wave approximation. Factors to
account for the partial overlap and the effect of focusing are introduced.

The scheme is implemented by first focusing a beam through a Brillouin cell, collecting the
transmitted beam. This is then recollimated and directed back to the input side of the cell. It is again

5sScott, Whitney, and Duignan



6 Methods for SBS Threshold Reduction

refocused through the cell so that the second focus overlaps the first. Brillouin four-wave mixing takes
place where the beams overlap; additionally, Brillouin amplification may take place outside the overlap
region. In our experiment we have refocused the beam through the active medium on its path back to the
front of the cell. This provides an extra zone where Brillouin amplification may take place.

We use the notation of Ref. 27 and assume plane waves overlapping (Fig. 2). We assume that the
input beam enters the cell at r = 0 as beam 1, and is then directed through the cell a second time as beam
3. We consider the behavior of a Brillouin-shifted beam 4, which propagates from r = L counter to beam
3 and is then passed around to form beam 2, which propagates counter to beam 1:

E (r t) = 2 E (r,t) exp{i(Ojt-j r)} + c.c. ; = 1,2,3,4;
i 2~ 3J r4 2 = 1 Ao;(1)

O°k = 0)3 ; 0D2 0=4 A 2 = +D1 - AO);

k2 _k1 ; L = -_3; A _ --I - k2 + k3 + _4 = 0.

Fig. 2- Plane waves overlapping in a Brillouin active medium

The overlapping beams produce interference fringes:

( ... +~2 E1E2 exp{i(Aot-2k .r)}+ (ElE4 +E2E3)exp{i(Acot-k, r)I
+ 2
+1-fE3 E4 expji(Acot-2k 3 .r)} + c.c.

In the above ks is the wave vector of the interference pattern formed by k_ and k4, and is defined by:

ks=-1-k4; k5=2k1cosO,

where 20 is the angle between ki and k3.

The interference fringes in turn drive acoustic waves:

'lU = 2 u1exp{i(Awt-2kr)} + c. c.

U- = 2 u, exp{i(Act - ksr)} + c. c.

-l3 = 1 U3 exp{i(Act - 2k 3 r)} + c. c.

(2)

(3)

(4)
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Scott, Whitney, and Duignan 7

The acoustic waves have resonant frequencies cosi determined by the speed of sound in the medium vs
and the wave vectors of the interference patterns that drive them:

s, = 2kivs = 2k3vs = ()s3; oss = 2kvs cos 0 (5)

The interference terms produce an electrostrictive force that drives the acoustic waves:

1 d~u, 3 1 '
(1 + ix1)u1+ Ad dt ElE2

(1 + ix5)Us + 1 dus = i3(E 1E*+EE 3 ), (6)
&o dt4 2ED

1 dU3 = _OFE*
(1+ixj)u 3 + 45co dt - 3E4

The first and third equations correspond to conventional Brillouin amplification; the second

corresponds to Brillouin four-wave mixing. J3 is a coupling constant, and the parameter 8c3o is the
Brillouin linewidth (HWHM), given by:

7 =2sVs=T X (7)

where tB is the decay time of the acoustic intensity. The decay time is weakly wavelength dependent, and
hence angle dependent. However for small angles this can be neglected:

36 0 (0) e 1/ A2 v cos 2 0.

In Eq. (6) we also introduced detuning parameters xl and xs, which give the ratio of the detuning
from the center of the Brillouin gain curve to the Brillouin linewidth:

X1 = (AO)-w3S1 ) / &Dwo; X, = (AO)a-V955) / 3OO = xl + (1-Cos 0) O)Sl / 3COO . (8)

When x = 0, we are at the center of the Brillouin gain curve. Inspection by using the values in Table 1
indicates that if q is more than a few mrad, the detuning between coss and cs I may be comparable to the
Brillouin linewidth.

The acoustic waves scatter the four electric fields:

dEr =3 (h1E2 u, +hsE 4 us)

dE2 = g (hlElu* +hsE3us)

dr 213 (9)
- g (hsE2us +h3E4 u3)

dEr 2=)

dE4 g * 
r--(hs Eius + h3E3U3)

7Scott. Whitnev, and DuiRnan
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Table 1 - Sample Values of Brillouin Parameters for X = 2.1 jlm
Medium CS2 fal SnC14 [Ibl Xe (39 atm) [cM

Gain coefficient g (cm/GW) 130, 65 [d] 11.2 44
Brillouin shift v, (GHz) 1.69 1.11 0.16

cog (rad/s) 1.06x1010 6.97x109 1x109

Phonon lifetime 'r (ns) 20 7 132

Linewidth &HO (rad/s) 2.5x107 7.2x107 3.8x106

Mode spacing c/1.8 m (Hz) 1.67x108 1.67x108 1.67x108

Detuning: x1=0
0 = 5 mrad: xg 5.3x10-3 1.2x10-3 3.3x10-3

0 = 50 mrad: xs 5.3x10-1 1.2x10-1 3.3x10-1
[a] D. Pohl and W. Kaiser, "Time-resolved Investigations of Stimulated Brillouin Scattering in

Transparent and Absorbing Media: Determination of Phonon Lifetimes," Phys. Rev. B 1, 31 (1970).
[b] S. T. Amimoto, R. W. F. Gross, L. Garman-DuVall, T. W. Good, and J. D. Piranian, "Stimulated-

Brillouin-scattering Properties of SnCl4," Opt. Lett. 16, 1382 (1991).
[c] V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, "Gain and Linewidth in

Stimulated Brillouin Scattering in Gases," Sov. J. Quantum Electron. 2, 69 (1972).
[d] A. I. Erokhin, V. I. Kovalev, F. S. Faizullov, "Determination of the parameters of a Non-linear

Response of Liquids in an Acoustic Resonance Region by the Method of Nondegenerate Four-wave
Interaction," Sov. J. Quantum Electron. 16, 872 (1986); K. D. Ridley, A. M. Scott, and D. C. Jones,
"Frequency Detuning in Brillouin-Induced Four-Wave Mixing," Int. J. Non-linear Opt. Phys. 1,

563 (1992).

In Eq. (9) g is the Brillouin gain coefficient, and h1, h2, and hs are empirical "enhancement factors"
that are discussed in the next section. For now we note that these factors can be unity in the case of
perfect plane waves.

Equations (6) and (9) together form a set of equations that describe the transient and steady-state
behavior of the loop geometry. They assume the slowly varying wave approximation and neglect
spontaneous noise. The equations also require appropriate boundary conditions to define the problem
fully.

PHASE CONJUGATION BY STIMULATED BRILLOUIN SCATTERING

Before tackling the problem of the loop SBS scheme, we review the features of phase conjugation by
SBS. We can study the steady-state behavior of a Brillouin amplifier by using the above equations with
E3 = E4 =0, and us = u2 =0.

SBS is a result of a convective instability in which the output is the result of high gain amplification
of spontaneous noise, which is always present at a level of about exp(-25) of the incident pump beam.
Over long time scales variations in the noise occur that are detectable in the scattered beam [28].

Two mechanisms contribute to producing an apparently phase conjugate SBS beam. The first
mechanism is gain enhancement. This arises when the speckle structure of the aberrated beam produces
large spatial variations in intensity in the focal volume of the focused pump beam. The Brillouin gain is

8
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average net gain coefficient. The enhancement factor depends on the precise speckle structure of the
pump beam and is usually assumed to be 2 [1]. There will always be some component of noise that is
conjugate to the input, and this will experience the enhanced gain.

The second mechanism for producing apparent phase conjugation is the fact that the source of the
SBS beam is the focal volume of the pump beam. This is more precisely a mechanism for retroreflection;
the SBS is not truly conjugate. In the near field it may have noticeably poor fidelity, but in the far field
(which is the image of the focal spot in the SBS cell) the beam will often match the structure of the input
beam. This latter mechanism will give the SBS beam an appearance of being phase conjugate when the
beam has little speckle structure and gain enhancement does not take place, as in the case of a near
diffraction limited input beam [1].

Steady State Brillouin Amplifier

If we take Eqs. (6) and (9) and use E3 = E4 = 0, and us = u2 = 0, we get:

d11 = h1g9I 1 Ig2 =1 2 (10)

dr (I+x ) dr

where

2 9EoIEiI = c; gBhi=giEil (11)

If the input of the Brillouin amplifier is a specific signal, then x will be determined by the frequency
of the signal. If the 'signal' is spontaneous noise, then it will have a broad spectrum and the resonant
component will be amplified and x can be taken to be zero.

The reason for introducing hi is now apparent. h1 is the enhancement factor discussed above. It
equals 1 when El and E2 are plane waves, and we assume a value of 2 when calculating the role of gain
enhancement in the conjugate beam.

Equations (10) have as a solution

I2 0) lM= exp~h19BY4 - I2 )L}; (12a)
12(L) I,(0)

I1(L) - 12 (L) = 11 (0) - 12 (0) . (12b)

In the absence of pump depletion, this reduces to

12(0) = I2(L)exp{gBI 1L} (

9
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Equation (12) emphasizes that if there is no input signal [12(L) = 0], the output SBS intensity I2(0) will
also be zero. In the absence of an applied signal, spontaneous noise [which is present at an intensity exp
(-25) less than the pump beam] will act as the signal.

We can use Eq. (12) to calculate the scattering efficiency. First we calculate the transmission of the
pump beam. If we write I2(L) = qIl(L), where q is a spontaneous scattering coefficient, we obtain

II (0) =I L
1 - q exp{hlgBI (L)L} (14)

As h1gBI1(L)L-4-log(q), 1i(O)* o .

Equation (14) plus Eq. (12b) shows that the SBS output is characterized by a threshold
h1gBI (0)L = -log(q) 25 and a slope efficiency of 100%. This also indicates that the threshold for
phase conjugate SBS will be approximately a factor 2 less than the threshold for nonconjugate SBS (Fig.
3).

OutputgalL
SOBS with and without gain enhancement

25

20

15 with

10 5 / ~~~~~withou
5

0 /. . .- .. InputglL
5 10 15 20 25 30 35

Fig. 3 -Output gIL vs input gIL with and without gain enhancement

We return to the equations above, which describe a Brillouin amplifier. The expression for I(r)
makes it possible to integrate the equation for dE / dr to determine the Brillouin-induced phase shift.

We conclude this discussion by mentioning the transient behavior. In the transient regime, the Stokes
intensity is given by:

I 2 (t) exp(-6 0ot+ h1 g 1I1L wo) t), (15)

which does not simply grow exponentially with time.

In summary, phase conjugation by SBS is characterized by nonexponential transient behavior, a
threshold dependent on the spontaneous noise, a 100% slope efficiency in principle, and conjugation
occurring because of enhancement in the effective gain coefficient due to speckle intensity fluctuations.

Overlapping Gaussian Beams

This section describes features associated with focusing of the beams. We first develop a model for
the loop geometry by considering two focused Gaussian beams that intersect at their waists. Figure 4
shows the geometry to be characterized by an intensity overlap region with length Leff where four-wave
mixing can take place, and interaction regions with length Lt where Brillouin amplification can take place.

10
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Fig. 4 - Two Gaussian beams overlapping at their waists. Leff

indicates the length of the intensity overlap region where four-wave

mixing can occur, and Lt indicates the length of the Brillouin

amplification region.

We consider beams intersecting at angle 20 in the y-z plane The two beams have axes y = ±z sin 0
and intensities given by Ref. 29:

2P1 f 2x2 2(y+z sin0)2

1, 70)2 exp] 0) 2 0)2 }
(16'

C 2 2Il~r)= 2exp - 2 -. iv2 I,16
we the 2P2 2du 2fx 2(yt -z sin 0)7'r0) 0)2 co2

where the radius of the beam co is given by

0)2 = 0)O21+ Z2 (17

wo0 is the waist located at z = 0, zo is the value of z where the beam expands by-F2, and P1 and P2 are the
powers of beams 1 and 2 respectively.

The growth rate is given by Eq. (10)

-= hlgBII2 (10dr
This can be integrated over the x-y plane to give:

)

)

dP 2 = h1gBP1P2 ; Az

dz 90 Jz)1(

_4z 2sin 2 o 
exp { 2[}+

(+z2 / Zo2 )
(18)

11Scott, Whitney, and Duignan
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Integrating over z = ±¢ gives

j dP2 IP 2 (0) hlgsPlz0-P = log P 0=h9B1 fo' (19)
f P2 P2 (L) 0)02

where

______ 2z sin 0 2 0Osep

7r [1+t O O o div

Osep = 20; Odiv= 2)o / zo, (20)

as 0 -0 fo--1.

The parameterfo is the overlap parameter and describes the degree of overlap of the two foci. When
to = 1, the two beams fully overlap and we can define the mean pump intensity and interaction length as:

1, = P1 / r)o2; 4 = rzo * (21)

It is straightforward to show that when the angle of separation between the two beams 0 sep = 20
becomes comparable with the divergence of the focused beam Odiv = 2coj/zo, then fo and the effective
interaction length Leff for the overlapping beams become:

f OA Lef = _ fo . (22)
2-@-z-Osep

In Fig. 5 we plot the overlap parameter obtained from Eq. (20) and compare it with the approximation
in Eq. (22).

Leff/L Overlap Parameter fo
1X

0.8

0.6

0.4

0.2 ) 1 2 3ThetalThetaD=xo/2wo
0 1 2 3 4 5

Fig. 5 - Comparison of overlap parameter as function of

osep/ 0 div calculated by using Eqs. (20) and (22)

12



Scott, Whitney, and Duignan 13~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Experimentally we do not wish to let the beams obstruct each other in the far field. This means that,
in practice, we tend to operate with Osep/OdivŽ 1, i. e., withfo < 0.2. Note also that the overlap parameter
reaches 0.8 when (sep/0 div < 0.4. This aspect can be used to explain why SBS formed from a Gaussian
beam can produce an apparently conjugate beam even though the mechanism of gain enhancement is not
occurring.

In the following sections we use the one-dimensional analysis with interaction lengths and intensities
determined by Eq. (21) and (22).

Theory of the Loop-SBS Geometry

When two focused beams cross, there will be an overlap region where Brillouin amplification and
four-wave mixing may take place; outside this region, Brillouin amplification alone may occur. Our
particular experiment has a second intermediate focus where Brillouin amplification is possible. We
model this by considering a system of two coupled nonlinear regions (Fig. 6).

Overlap zone

E3 1<4 

z=O z=L
E5

E6

Brillouin Amplifier

Fig. 6 - Model used for separately considering the four-wave

mixing and Brillouin amplification regions

We lump together all the regions where Brillouin amplification can take place but four-wave mixing
cannot. This is done to prevent an excess of minor variables from obscuring the physics of the interaction.
The equations for E5 and E6 can be obtained directly from above with a suitable renaming of variables.

We take the interaction length for the overlap zone to be L = foLt and for the amplifier to be LA = (2-
f.) Lt. The boundary conditions become:

E1(r =0, t)= Ei,;
E6(rA = LA,t) = y1E 1(r= L,t-t 1 );

E3 (r=0,t)= y2E6(rA =0,t-t 2 )expiOA; (23)

E 4 (r=L,t)= 0;

E5(r= 0,t) = y2E4 (r= 0,t-t 2 )expi¢ 5 ;

E2 (r=L,t)= ylES(rA = LAt-tl).

13Scott, Whitney, and Duijznan
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In the above, yj and 72 are the amplitude reflection coefficients for mirrors on either side of the loop,

tj and t2 are the relevant transit times (tf + t2 = tc is the round loop transit time), and OA and Os are the
phase shifts around the loop for frequencies col and (02 respectively.

The phase shift for the Stokes beam is given by

Os = ksLz 00p = osL 0o0p I c = OA - o)sLIOOP / c - X1 CO0L1 0 0p / C. (23a)

Transient Behavior of the SBS Loop

We calculate the transient behavior of the SBS-loop system by assuming undepleted pump beams,
i.e., E1 , E3 , E6 are all constant when t > 0, and zero when t < 0. This gives E6 = yl El; E3 = Ti 72 E1 .

We apply a Laplace transform to Eq. (6) and obtain

[S0o (I+ixl)+s]il = -fl3So0E1E2

[ 3w)o(1 + ix) + skii = -f330o (E1 E4 + E2 E3) (24)

[I0) 0 (1+ix 1)+s]3 = -fl6o) 0E3 E4

[6 oo(l + ix) + s]YuA = +188CIE5E6

where s is the transform variable. We assume xl = xs, which is valid for small angles.

The equation for the Brillouin amplifier section can be simplified. The equation for E5 is taken as

dE5 = g hlE6FA (25)

d~r 2 P3 l~A

When combined with Eq. (24), this has the solution

ES(LA) = E5(0)exp 1 h1 gS) 0 r1 lEd2LA | (26)
-* -* I 21)2[3o(1+ixl)+s]

The equations for E2 and E4 become

dE2 =-{h 1IE1I2E2 +IE3I2E +E1 E3E4}3
dr E 2 E 4I

d f-{h1 E3 E4 +1E1124 +E E3 E2 }S(27)

S= g661)o
2[10o(1+ix5)+s]

Methodsfor SBS Threshold Reduction14
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In the above we have taken h, to be 1 since there are no solid grounds for choosing otherwise. We
have also neglected the difference between xs and x1. If necessary, the effect can be incorporated into h1,
giving it a complex value.

The coupled equations in Eq. (27) can be decoupled to form two second-order equations

dr 2 +S(1+h1E 1
2 +IE312 ) d 2 +S22112 If31 +h 1 (IE1 4 +IE 3 1 4)) =

F4 IEJ 12 +IF (28)

r24 + S(l+ hi)(I1 d| )4 9+ (h 1 +h1(1E11 4+1E3 14))E=0.

These equations have solutions

= E2 a exp(Aar) + E2 b exp(ibr)

E4= E4 a exp(i;ar) + E4 b exp(Abr);

_S (1+h ( 2 +I3|)2 WIE1 |S; (29)A~a,b=y(1+h1)(IElI +IE~31 )±-~Ii~;(9

w2= (1+h)2 (|E112 +I|3F 2 h (|E1 14 + |E3 14 + E1 12 |E3 12 )..

The variable w can be written as

W = W1IE1 1 ; T = y 1 Y2 ; (30)

W12 = (1 + T)2 h1 (2-h 1 )(1- T)2

where T is the transmission coefficient around the loop.

This simplifies in three cases of interest: h I = 0, 1, and 2:

h1=Oor2=>w1 =1+T; h1 =1>w1 =2NFf. (31)

The three cases correspond to the following: hi = 0 corresponds to a large angle between the two
beams so that the four-wave-mixing resonant frequency co, is greatly detuned from the normal Brillouin
resonance frequency. In that case, Brillouin amplification cannot contribute to -the interaction. h1 = 1
corresponds to the case of small angles with the two resonant frequencies matching but no gain
enhancement for the conjugate beam. hl = 2 corresponds to resonance, but with phase conjugate gain
enhancement occurring in the Brillouin amplification process.

We consider the boundary value of E4 = 0 at r = L. This implies

E4, = -(4b exp)-Swl |E1 I.

15
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When this is substituted in the coupled Eqs. (27), the result is

E2a ,b = - E4a, b[(h - 1)( - T)+Pw,] (33)
2E3

We now return to the boundary conditions [Eqs. (23)] for the loop. When we apply the Laplace
transform we obtain

E2 (r = L, s) = ylE5 (rA = LA, s) exp(-st3)

E5 (rA = 0, s) = y2E4 (r = 0, s) exp(io5 - st 2 ).

These can be combined with Eq. (26) to link E2 to E4. Combining this with Eq. (33) we can
eliminate the constants E2ab, E4ab. This yields

log{ w1 2 }=-stC-i(S-tOA)
T[1-exp(-SwiIEil L)] (35)

+A23[2yl2 hlLA IL+w1 +(1+hl)(1+T)]jE1 12L.

Since S is defined by Eq. (27), there are only two variables, s and x, which are free in Eq. (35). We.
require equality in the real and imaginary parts, and this leads to fixed values for s and x.

Applying the inverse transform, we find that the solution is

E2 (r = 0) = E0 exp(st), (36)

where Eo is some initial field, e.g., resulting from spontaneous scattering. The real part of s will be a
growth or decay rate, while x will be such that the imaginary part of s is zero (to maintain a consistent
definition of 0)2).

The phase shift AO = (A- Os is given by

AO= A-os=-nAcoLcIc=-sB LcIc-x~cs0LclI , (37)

where Lc is the path length around the loop, This relation means that AO changes by 2K over a change in
the path length of a few cm.

The growth or decay rate of the intensity 12 is given by 2s, and we multiply this by the phonon
lifetime to get a dimensionless growth rate p:

p=2 srB=s/ 8cO . (38)

We also define a dimensionless intensity parameter MI:

Ml = gjE4 2 L, = gjE 12Ll/fo (

16
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In Eq. (39), Lt is the effective length of the focal volume while L is the length of the overlap region.
The definition of MI makes it independent of overlap parameter and makes it possible to directly compare
the predictions of the theory with the single-focus SBS threshold where Mthresh .25.

In the following discussion we have investigated the behavior of p and the influence of various
parameters. Unless otherwise stated we have used values:

LA / L=(2-fo)/fo;
=-0.8 ; y=0.8; AO=0; (40)

t, =6ns; zB =20ns; tpulse=210ns.

Figure 7 is a plot of growth rate p vs intensity MI for three different values of cavity transit time tc.
At low intensity p tends to -1, corresponding to the normal decay of any Stokes radiation in the loop.
Above some instability threshold, p becomes positive and any Stokes radiation will grow exponentially in
time and continue to do so until effects such as pump depletion limit it. The figure also illustrates that the
instability threshold is independent of the cavity round-trip time; above threshold, the presence of a long
cavity causes the build up rate to be reduced.

Growth Rate (1/tB)

2

1.5

1

0.5

-0.5 / 2 3 4 5 Pump Intensity

Fig. 7 - Growth rate p vs pump intensity M1 for three different

values of cavity transit time tc. Curves correspond to tc = 0.6 ns, 6 ns,

60 ns respectively for top, middle, and bottom curves on right-hand

side.

This "absolute instability" requires some initial noise to be present so that radiation in the loop can
build up. But unlike the "convective instability" of conventional SBS, the noise is no longer needed once
the process is under way. The instability threshold itself is not dependent on the noise intensity. The graph
shows that the instability threshold is almost a factor 20 less than the SBS threshold, an observation made
by several authors [9, 10].

The time constant can be very large near threshold, and the effect of the instability will not be
observed in practice unless spontaneous noise has built up to become comparable in intensity to the
incident pump within the duration of the laser pulse. By analogy with the conventional SBS threshold, we
can define an "onset threshold," which requires that the noise grow by a factor exp(25) within the
duration of the laser pulse:

17
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Ml = Mistb P = ° 0

M = Monset = exp(p tpuse I TB) = exp(25). (41)

By using Eq. (41) for our experiment, a growth rate p = 2.4 /TB is required. In Fig. 7 this growth rate (the
onset threshold) occurs at more than 3 times the intensity of the instability threshold and increases with
increasing cavity length. In this case the onset threshold is now a factor 5 less than the SBS threshold-
substantially reduced, but not by as much as predicted by the instability threshold alone, and much closer
to experimental observations.

We write ton as the time delay before the loop produces an output. In the case of a short cavity, Fig. 7
shows that p depends linearly on intensity. For the onset threshold we can write:

Ponset tpulse ~ 25 = Po (Ii - instab )ton (42)

=> PoEon 25 + P0hinstabton'

where Eon = II ton can be thought of as an "onset energy," which is required before an output from the
loop can be observed. As we increase the pulse energy, this will remain almost constant, decreasing
slightly as the onset time decreases.

Figure 8 shows the instability threshold. In Fig. 9 we plot the onset threshold as a function of round-
trip transmission coefficient for various values of fo. Not surprisingly, the threshold increases as the
overlap or transmission coefficient decreases. Although the instability threshold remains modest at the
lowest values of fo and T, the onset threshold becomes large. This is less of a problem with other
materials having shorter phonon lifetimes.

gIL 0fo= .05, .1, .2, .3, .4, .5, pth =0, h = 1
5

4

3

2

Trans Coeff
0 0.2 0.4 0.6 0.8 1TrnCo.

Fig. 8 -Instability threshold vs loop transmission coefficient for various overlaps
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gIL f0 = .05, .1, .2 .3, .4, .5, pth=2.4, h=1

14

12

10

8

6

4

2

Trans Coeff
0 0.2 0.4 0.6 0.8 1

Fig. 9- Onset threshold vs loop transmission coefficient for various overlaps

In Fig. 10 we consider the effect of varying the phase mismatch AO. In the two diagrams we plot the
instability threshold and detuning parameter for the case fo = 1, h1 = 1, t1 = t2 = 0.8. This shows that the
threshold is substantially increased when there is a significant phase mismatch. The frequency of the
conjugate varies smoothly as the phase mismatch varies. If we increase the overlapfo from 0.1 to 0.5 the
same features are observed, with a reduced threshold, but the frequency detuning becomes more bent,
becoming larger at the maximum phase mismatch values.

Figure 11 shows the contribution played by the Brillouin amplification. The upper of the three curves
shows the onset threshold when only four-wave mixing is taking place (i.e., with h = 0, valid in the case
of a large intersection angle when the Brillouin shifts are different in the two gratings). The middle curve
corresponds to the case of Brillouin gain in the overlap region only but no auxiliary amplifier. The lower
curve is for the case of a second Brillouin amplifier (i.e., with h = 0; h = 1, LA = 0; and h = 1,LA * 0).
The Brillouin amplifier makes only a small contribution to the value of the instability threshold,
particularly when there is a high loop transmission coefficient.

We can examine the role of speckle enhancement and determine how it affects the growth rate. Figure
12 shows that the conjugate beam does experience an increased growth rate but that this is a somewhat
smaller difference than the factor 2 observed in conventional SBS. This suggests that the discrimination
between the conjugate and nonconjugate beams may not be as large as is the case in conventional SBS.

In Fig. 13, the difference in threshold with and without gain enhancement is seen to be greatest in the
case of small overlap and low transmission around the loop. In the case of small overlap, the conjugate
threshold stays almost constant as T drops from 100% to about 10%, while the nonconjugate threshold
increases by 60%.
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*_______________ _ i - phase/pi
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

(a) 1 inst
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1

-1

-4

0.50.-.7 pnase/pi
0.25 0.5 0.5 1

(b) detuning x

Fig. 10- Instability (top) and detuning parameter (bottom)
vs phase mismatch forfo = 1, hi = 1, tl = t2 = 0.8

Intensity
Onset Threshold

I Loop transmission
0 0.2 0.4 0.6 0.8

Fig. 11 - Onset threshold vs transmission coefficient
Top curve - no Brillouin amplification (e.g., with large intersection angle)

Middle curve - Brillouin amplification in overlap region only
Bottom curve - Brillouin gain in overlap region and in second focal region
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Growth Rate(l AB)
Effect of speckIe enhancement

5.

4/

3/

2.

-1

Pump Intensity (gIL)

Fig. 12-Effect of speckle enhancement on growth

rate as function of pump intensity

Instability glL
Instability threshold, fo = .1, h = 1 ,2
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0 0.2 0.4 0.6 0.8
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(b) large overlap

Fig. 13 - Instability threshold vs feedback; for small overlap (top) and large overlap (bottom

graph). Lower curves depict the conjugate; upper curves depict the nonconjugate thresholds
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Steady State Theory

In the steady-state calculation we take all time derivatives to be zero and consider the six coupled
equations derived from Eqs. (6) and (9):

dE1 g {(1E22 +1E4 12)E1 + E3 E4 E2}
dr 2(1 +ix1 )

dE2 = 2(li){(E12 +|E3 12 )E2 + E3E4El*}

dE3 - g {(1E212 +jE4 12)E3 +E1 E2 E4}

dr 2(1 +ix1 )

dE4 g {(2E1j 2 +E312)E4 +E1E2 E}(
dr 2(1 +ix1 ) (43)

dE 5 -g E612E5

dr' 2(1 +ixl)

dE6 -g {(IE512 E }

It is practical to consider the case when x = 0 and AX = 0. The last two equations above can be solved
immediately, leaving the four coupled equations. The four equations can be integrated numerically in the
following manner. Firstly we note that the quantity C = 1E1j 2 -_E212 +IE312 -_E412 is conserved. The
equations are numerically integrated from r = L to r = 0, starting with estimates for El, E2, E3, and
setting E4 = 0. Given the values for E2 and E3 at r = L, the equations for the Brillouin amplifier can also
be used to predict the values of Es and E6 and hence E4 and E2 at r = 0. The selected values of E2 and E3
at r = L are then adjusted and the procedure repeated until the boundary conditions are met. At this time, a
result for one value of El at r = 0 is obtained. Once this has been obtained, the parameters are slowly
varied to obtain an output intensity versus input (Fig. 14).

The curved line that stops as it approaches zero (where Ml = 1.4) is the output of the modeling (fo =
0.5, T = 0.64). (The modeling became unstable when M1 reached zero.) The straight line on the figure has
a slope of 1 and crosses the horizontal axis at the instability threshold. The result shows that in the steady
state regime the loop output has a slope efficiency of 100% (more than 100% near threshold) and implies
that the steady state threshold is the same as the transient threshold predicted by theory.

Note that the above modeling requires no noise term, so that unlike SBS, the threshold does not
depend on the level of spontaneous scattering. This also means that over long time scales the output will
not be expected to vary as the result of noise-related fluctuations.

LOOP EXPERIMENTS

The experiments were carried out at 2.12 gim by using a Q-switched Ho:YAG laser and the apparatus
shown in Fig. 15. The Ho laser consisted of a flashlamp pumped 5-mm-diameter x 66.5-mm rod in a 90-
cm optical-path cavity with a -2.5-mm-diameter transverse mode-selecting aperture. The 2.1207-jim line
was selected by using a 3-mm-thick quartz birefringent filter at the Brewster angle. This line was
narrowed from -30 GHz down to -0.6 GHz by use of two intracavity uncoated etalons (6.4-mm sapphire
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Fig. 14- Steady-state plot of output vs input. The upper curve is the calculation forfo =

0.5, T = 0.64. The lower is a straight line with slope 1 and crosses the axis at the

instability threshold.

M Telescr pe
/ / | | | ~~~~~Ho:_YAG Laserl

Det

Cal~~~~~~~~~~a

Fig. 15 - Schematic of loop-SBS experiments. The telescope provided an expanded
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calorimeters, Det are Ge:Au detectors, and BS is a wedged beamsplitter.
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and 4.0-mm quartz). [The finesse for the sapphire etalon is 0.91 with a free spectral range (FSR) of 13.5
GHz; for the quartz it is 0.68 with a FSR of 24 GHz.] The cavity was Q-switched by using an acousto-
optic modulator to produce pulses of up to 25 mJ, with a duration of -210 ns at 1 Hz. Traces of the output
pulse show strong axial mode beating, which could be averaged out electronically. A sample trace is
shown in Fig. 16. Fourier transforms of the traces showed only c/2L axial mode frequency multiples
present in the spectrum. The power spectrum changed from shot to shot and generally displayed 4 to 6
modes, consistent with the Fabry-Perot measurements.

100

80-JI
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~40

0~
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Time (ns)

Fig. 16 - Sample trace of Ho laser output showing modulation resulting from axial mode beating

The output of the laser was directed through a collimating, beam-expanding telescope via beam-
steering mirrors to a half-wave plate followed by a polarizer consisting of two ZnSe Brewster plates. This
allowed the beam to be attenuated by rotating the half-wave plate. A quarter-wave plate produced circular
polarized light that acted as an isolator to reduce feedback from backscattered light back into the
oscillator. The backscatter extinction coefficient was approximately 10:1. When the half-wave plate was
used to strongly attenuate the incident beam, the beam quality was degraded. This was probably the result
of multiple reflections inside the polarizer.

The output from the isolator was directed through a CaF2 wedge that reflected fractions of the pump
beam and any conjugate to diagnostics. The diagnostics consisted of pyroelectric calorimeters and Au-
doped Ge detectors that monitored the energy and intensity of the two beams. Additionally a third Au-
doped Ge detector monitored the radiation transmitted by the Brillouin medium. The absolute power
sensitivity of the fast detectors could be obtained by numerically integrating the area under a trace and
relating this to the laser output measured at the same time.

As shown in Fig. 15, the laser beam was directed past mirror Ml to the first lens and focused into the
Brillouin cell. The cell was sealed with CaF2 windows and filled with CS2 (Aldrich HPLC [high pressure
liquid chromatography grade]). The length of the active medium was 10.7 cm. The transmitted beam was
recollimated by the second lens and directed to dielectric mirror M2, which has 96% reflectivity. This was
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tilted a few degrees from normal incidence and returned the beam to form a second focus a few mm to the
side of the first. The transmitted beam was recollimated by the first lens and directed onto mirror Ml, a
gold-coated Ge etalon with 98% reflectivity. The reflection from this mirror was refocused by the first
lens and overlapped the first focus.

The intersection angle between the two overlapping beams at the focus depends on the focal length of
the first lens and the separation between the axes of the two beams at the lens. This separation is the same
as the separation between the beam transmitted past the edge of mirror Ml and the beam reflected by it.
Both lenses had focal lengths of 23.5 cm and mirrors Ml and M2 were positioned 16 cm from the lenses.
As the tilt angle on mirror M2 was varied from 10 mrad to 70 mrad, the displacement between the centers
of the two beams at mirror Ml varied from 2 to 3 mm.

Alignment of the Loop

Mirror Ml, which was polished on both sides flat and parallel within 10 arc sec, was on a kinematic
mount that could be translated during the alignment procedure. In one position it reflected the pump beam
before it reached the SBS cell, or it could be moved out of the way to transmit the beam after it had been
reflected back from mirror M2. Thus two beams could be provided for alignment. These beams were
reflected by the CaF2 beamsplitter and refocused by a third lens to a graphite target at the focal plane
where weak breakdown could be observed. The spacing between the two SBS lenses was adjusted to
ensure that the foci of the two alignment beams were the same distance from the third lens. Mirror Ml
was then tilted until the two focal spots overlapped. When they overlap here they also overlap in the
Brillouin cell. Final adjustment was made of mirror Ml while monitoring the energy of the backscattered
beam. This procedure was found to be quick, reproducible, and convenient.

Energy Measurements

The input energy was varied, in one case by varying the laser flashlamp voltage and in the other case
by varying the half-wave plate, and the resulting output was measured. The backscatter measurements
were calibrated by using a 94% reflectivity copper mirror placed immediately in front of the loop.
Measurements were made for the loop and with the pump beam blocked after it gad passed through the
cell once or twice, corresponding to single- or two-focus SBS. The results in Fig. 17 show that in all cases
the backscattered signal was characterized by a threshold and a slope efficiency. The slope efficiency was
91% for the loop; 87% for two foci, and 72% for the single-focus case. The threshold for conventional
SBS was 10.5 mJ; this dropped to 8.2 mJ for two-focus SBS. The threshold for the loop was 4.8 mJ. The
maximum reflectivity was 64% for the loop, 36% for two-focus SBS, and 21% for single-focus SBS.

When the single-focus SBS threshold is used as the benchmark, the two-focus SBS scheme reduces
the threshold by 1.3 and the loop reduces the threshold by a factor 2.2. The comparison between theory
and experiment for the loop will be made later. However, in going from one-focus to two-focus SBS , we
would expect the threshold to be reduced by a factor 1.8, after accounting for transmission losses (T
-80%). Because the laser operated on several axial modes, it was expected that the optical path between
the two foci should be set to the laser cavity optical path length to within a small fraction of the overall
coherence length (Lcoh = c/Av 50 cm). However, we found no significant effect in varying the focal
separation.
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Fig. 17 - Plot of reflected energy vs input energy

Intensity Measurements

Figure 18 is typical set of traces for the loop geometry. The transmitted beam has an initial transient
spike followed by a region where the intensity is almost constant. The backscattered intensity switches on
suddenly and follows the pump intensity. The traces can be absolutely calibrated by using the copper
mirror and energy monitors. The transmitted and conjugate traces sum together to match the input trace to
within a few percent over the whole pulse, indicating that all the power is accounted for.

In contrast, the set of traces, for a misaligned loop (Fig. 19) shows that the transmitted and
backscattered beams are modulated and irregular.

Temporal data as in Fig. 18 can be used to calculate the reflectivity as a function of time (Fig. 20).
This shows the sudden switch on of the conjugate beam and a power reflectivity nearly 90% at the highest
pump powers.

Another way of presenting the data is to plot the backscatter intensity as a function of input intensity
(Figs. 21 and 22). This approach, which converts the two traces into a Lissajous figure, was first used by
Zel'dovich et al. [1]. The curve is traced in two passes: first on the rise of the input and again on the fall,
with the transient behavior displayed during the initial part of the rise and steady state during the fall.

Figure 21 shows three sets of data taken at substantially different input energies. In each case, the
initial transient behavior corresponds to loops near the origin where the output is zero while the input is
increasing. After the reflected beam is established, the curves all lie close to the same curve. This curve is
a straight line with a slope efficiency of -100% and a threshold power of -6 kW.

26



Scott, Whitney, and Duignan 27

80

60

a)
¢ 40
0~

E
C)5a)
m

20

0

0 100 200 300 400 500 600 700 800

Time (ns)

Fig. 18- Typical temporal profiles of beams. The traces were electronically smoothed

(removing appearance of mode beating) to display essential behavior.

U,,

CL

0

0~

Time (200 ns/div)

Fig. 19 - Temporal profiles showing slow modulation in reflected and transmitted beams for a

misaligned loop. The traces were electronically smoothed (removing appearance of mode beating)

to display essential behavior.

,' '\ X Smoothed traces
I '.\

----- Input

Transmitted

of~~~~~~~~~~----SB

Input A\

Transmitted 

27Scott, Whitney, and Duignan



Methods for SBS Threshold Reduction

1.00

As 0 0.80
> 0

' a 0.60
a) a)EE -
a) 0)3 . 0.40
0 2~
m° E

MZ 0.20
0

0.00

Time (100 ns/div)

Fig. 20- Reflectivity and normalized input power as function of time
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Fig. 21 - Reflected vs input power for three different input energies in the loop geometry. Straight

line portions of the curves have slope efficiencies -100%.
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Fig. 22- Sample plot of reflected vs input power for three different geometries

This experimental curve is similar in character to the modeling curve of Fig. 14. The main
discrepancy is very close to the threshold, where the model predicted a suddet drop with a slope of
greater than 100%. Two mechanisms could be responsible for this minor discrepancy. First, we note that
the model neglected spontaneous noise. When this is included, the theoretical curve resembles more the
curve above. Second, this low-reflectivity region corresponds to the regime where the time constant
becomes very large so the acoustic wave and the reflectivity will change slowly and not reach full
equilibrium.

Close to threshold where the signals are small, the curves are remarkably similar. At higher
intensities, however, there is some spread in the data. The reasons for this are not certain but may be
associated with self-focusing in the CS2 or an artifact as the result of digital smoothing of the modulated
oscilloscope traces. Figure 22 compares the behavior of the various geometries.

We commented in the theory section that the transient theory predicted an onset energy before the
appearance of any backscattered beam. We can measure the onset energy by numerically integrating the
input intensity up to the onset time. In Fig. 23 we show how we have defined the onset energy, and in Fig.
24 we plot onset energy vs input energy. It can be seen that the onset energy is indeed roughly constant.
An evaluation of other parameters, such as the onset time or the input intensity when a backscatter signal
appears, were all found to vary substantially with pulse energy.

A similar argument can be made for an onset energy for conventional SBS. In fact, the transient
behavior of conventional SBS was found to be characterized by a similar onset threshold behavior (Fig.
25). The ratios of onset energies for the loop and the two-focus SBS to that of single-focus SBS are -2.3
and 1.3 respectively.
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Fig. 23 - The onset energy, indicated by the hatched region, is defined as the time integral of the input
power to the time when the reflected beam reaches 50% of its peak value. Since the reflected power rises so
sharply, it made little difference whether we used 10% or 50% in the definition.
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Fig. 24 - Energy for onset of stimulated scattering vs total input energy. Data were obtained
by integrating the input pulse over time until the SBS signal reached 50% of its peak value.

30 Methods for SBS Threshold Reduction

-o

U,

C)

, -

a)

0 
0-

2.5

2

E

>, 1.50)
C)

L' 1
C)

O 0.5

0



Scott, Whitney, and Duignan 31

4 X 1 -focus 0 iX f

na2 X ' O D __X -0 2-focus 0 0 X 

E cO 0 ~ _ _ _ _

3 5 100 15 0 0

0)

0

0 5 1 0 1 5205

Input Energy (mJ)

Fig. 25 - Experimental onset energy for SBS for a one- and two-focus geometry as a function of input energy

Mirror Position

Experimentally, the most easily varied parameters are the transverse position of mirror Ml (Fig. 15)
and the tilt angles of the mirrors. As mirror Ml is translated across the path of the input beam in one
direction, it starts to obscure the input and hence reduce system efficiency. When it is moved in the other
direction, it fails to intercept the beam coming from the second focus in the cell, and the effective
transmission around the loop is reduced. These effects can be calculated and compared with experiment.

The effect of tilting the mirror M2 is to change the position of the return beam incident on the input
beam. The beam is displaced, and this changes the overlap parameter. Additionally, part of this beam may
fail to be reflected by the mirror Ml, and this effectively reduces the loop transmission coefficient. The
theoretical and experimental thresholds are shown in Figs. 26 and 27, respectively. Results show very
little difference in threshold intensity but a slightly more noticeable change in the onset energy as the tilt
angle is varied. It is evident that the discrepancy between theory and experiment is not particularly large.
We noted a reduction in onset energy threshold of about 2.2 (Figs. 24 and 25), and we predict from theory
a value of M = gIL = 8 -10 (Fig. 9), corresponding to a reduction of 2.5 to 3 in the threshold from the
single-focus value.

Although no difference is apparent in intensity threshold with angle, some differences are observable
in the traces. At large angles the transmitted and backscattered beams are smooth, but for small angles a
characteristic modulation is observed, as in Fig. 19. This has been suggested [8] as being due to forward
Brillouin scattering, and the modulation frequency is of the correct order of magnitude.

In the case of the loop, the longitudinal mode separation is given by Ak/AL = 27r, where
Ak = k2 - kl, kl, and k2 are the wave vectors of the pump and Stokes beams respectively, and AL is the
change in loop length between longitudinal modes. For our experiment the calculated change in loop
length to change by 1 mode was 11.1 cm. We adjusted the length to be 164 cm, 167 cm, and 169.5 cm.
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Fig. 26 - Calculated onset energy and intensity thresholds as function of tilt angle. The intensity

threshold is given in terms of Ithresh = M = gIL; the onset energy is calculated as the value of M

assuming a square pulse with the characteristics given by Eq. (40).
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Fig. 27 - Measured energy threshold vs overlap angle. This has

qualitatively the same shape as the curves in Fig. 26.

When it was 164 and 169.5 cm long, the SBS and throughput powers were as shown in Fig. 18. When the
loop was varied to be 167 cm, the transmitted power was modulated as shown in Fig. 28 and the SBS was
also modulated. The beat frequency was observed to be 14 MHz. This modulation was previously
observed by Russian workers and was attributed to the excitation of higher order transverse modes [ 18].
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Fig. 28 - Input and throughput power when loop length is adjusted to make
Ak L = (2n + 1) Ir. Modulation frequency is approximately 14 MHz

Beam Quality

We first discuss the theoretical aspects of the lowest order Gaussian beam of waist wo at z =0. The
radial intensity of the Gaussian beam of spot size w and on-axis intensity Io can be written as

I(r) = I exp( ) (44)

where the spot size is given in terms of the beam waist co and the parameter zo by

xD2 = )o2 (1 + Z
2I / z) . (45)

The full-angle divergence of this beam is given by

OD =lMm- 2 = .M 2wo 1 _ 2vo (46)
za-pZ z -=Z Zo Zo

In the case of a diffraction-limited beam, the parameter zo becomes the Raleigh range ZR defined as

7r o2

ZO =ZR- (47)

This results in the product of the divergence times the beam waist having a value

2 2 __2_A __OOOD = -° = 2o 2=-= 1.35,Am for A=2.12 gm . (48)
ZR °O It
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The power transmission of a Gaussian beam through a centered circular aperture of radius ro is given
by

T(r0 )= 2r22 2rrexp co2 >dr=l- exp .2 (49)

If we focus a beam with a lens or mirror and measure the beam at the focal plane (not necessarily the
beam waist), we measure the far-field divergence (since the intensity at the focal plane is an image of the
intensity distribution at infinity). The beam diameter at this plane is independent of the position of the
beam waist before the lens, although the position and size of the focal waist does depend on the position
of the beam waist before the lens. This can be seen using the ABCD matrix formalism.

The ABCD matrix for a beam propagating a length L, being focused by lens with focal length f, and
then propagating a length f is given by:

[CB]=[l 1] _-f1 [ 1 L] [- L-- (50)

Let q(z) be the complex radius of curvature at any point z given by

1 = 1 -i 2 , (51)
q(z)- R(z) IO 2 (Z)

where R(z) is the radius of curvature and w(z) is the spot size. The propagation law for this parameter is

q(z)=qo+Z=Z+iZR , (52)

with initial value 2i°.5

The propagated beam ql is transformed as

= Aq+B f
ql Cq+D -q

f y f) (54)
1 -q 1 L 1 , A

ql f f f2 R1 Io)?

Now use Eqs. (52) and (53) for q and we have

-q 0 -z 1 L 1 -i-
f f f R1 ItO1

AI w 02 z I L 1
)- ,f.f+ff 2 = ItO)? (55)
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Equating imaginary parts,

A f2 r212 (56)
Af

(01=

Thus the beam size in the focal plane is independent of the position of the waist and depends only on the
wavelength, focal length, and waist size before the lens. Now use Eq. (48) and we have

=A f =CO0 D f = ODf
X coo 2 No 2 (57)

OD= 2 o)f
Thus the full-angle divergence of the beam is given simply by the beam diameter in the focal plane
divided by the focal length of the lens.

If a beam is not diffraction-limited, then there is no general form for the beam. We briefly mention
two different examples. In one case we may have a beam in which a substantial part has a Gaussian
profile, and some residual fraction has a much larger diameter, forming a pedestal on which the central
Gaussian lobe appears to stand. This lobe may have low intensity but contain a substantial fraction of
energy.

A second possible situation is that the near and far field may appear Gaussian, but zo may be smaller
by a factor Q than ZR, i.e., zo = ZR I Q. Then the divergence of this beam, using Eq. (46), is

OD -' 2O0'= Q 2 O0'=Q(eD)DL (58)
Zo ZR/Q ZR

where (OD)DL is the divergence of a diffraction-limited beam with the same waist, i.e., we obtain a
divergence increased by a factor Q, which can be taken as a measure of beam quality. Note that this is an
empirical description rather than a solution.

Experimentally, a measure of the beam quality was obtained by measuring the waist before the
focusing mirror (the near field) and the beam size in the focal plane (the far field), i.e., 401 cm from a
401-cm focal length mirror. We used Eq. (57) to determine the divergence. Measurements were made
both by using a pyroelectric array and by measuring the transmission of a series of apertures ("energy in a
bucket").

By using the energy in a bucket technique we found that in the near field, 97% of the input beam was
in a Gaussian distribution with a value of 2 coo = 3.5 mm. In the far field, more than 98% of the energy
was in Gaussian profile with 2co = 3.4 mm. The data and the fits to Eq. (49) are shown in Figs. 29 and 30.
When the loop was operated, more than 97% of the backscattered energy in the near field was in a
Gaussian beam with 2coo = 3.5 mm. In the far field, 97% of the energy was in a Gaussian profile with 2co
= 3.3 mm. The fidelity was taken as the ratio of the loop-reflected energy transmission to the input
transmission of the aperture. These measurements were reproducible, both close to threshold and well
above threshold. The data and the fits are shown in Figs. 31 and 32.
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3.4 mm as the beam diameter in the focal plane.
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For comparison, similar measurements were made with the single-focus SBS (Figs. 33 and 34). More
than 97% of the backscattered energy in the near field was in a Gaussian beam with co = 4.3 mm. In the
far field, 97% of the energy was in a Gaussian profile with co = 4.0 mm.

Next, an aberrator plate (a NaCl window that had been wet with water and roughly repolished) was
placed immediately in front of mirror Ml. To measure the effect of the aberrator, the incident light was
reflected by a copper mirror. Clear structure was seen in the near field but no noticeable intensity was
seen outside a radius of -3.5 mm. Near-field energy in a bucket was not measured in this case. In the far
field a highly structured speckle pattern was observed. Energy-in-a-bucket measurements showed the
pattern to fit approximately a Gaussian profile, with a diameter in the focal plane of -17 mm (Fig. 35).
When the loop-SBS system was operated with the aberrator in the same position, about 78% of the energy
was observed to be in a Gaussian profile with a 2co = 4.5 mm (Fig. 36).

The fidelity of the conjugate beam is often defined by measuring the transmission of the input
through a spatial filter and then measuring the transmission of the conjugate through the same aperture.
The fidelity is taken to be the ratio of the two measurements. We plotted fidelity as a function of aperture
and obtained a value of 0.55 to 0.78. At a diameter of 4 mm (corresponding to 86% transmission of the
pump beam in the far field), the fidelity was about 65%.

THEORY OF THE RING-SBS SCHEME

The theory of the ring-SBS scheme was first analyzed by Wong and Damzen [10]. We review this
theory, extend it to take into account the effect of frequency detuning, and discuss transient behavior. In
practice the theory for the transient ring is very similar to the theory of the auxiliary cavity.

We first discuss the steady state behavior. We consider a Brillouin ,amplifier in a cavity with a
partially transmitting mirror having transmission coefficient T and a transmission coefficient around the
ring of R = r2, where r is the amplitude transmission coefficient. The equations for the Brillouin amplifier
are

SE1 =- g 1E212 E1 and aE2 g IE1I 2 , (59)
Sr 2(1 + ix) Sr 2(l + ix)

which become

_______ -g 4I 2
r -+X2 1g 2 (60)

This can be solved by using I, (r) - I2 (r) = C, where C is a constant. The solution is

I2(r) = I2(0)Il (0) - I2(0)] (61)

I(O) exp{ (1 +x2) [Ii(0) -I2(0)]r} - I2(0)
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Fig. 35 - Energy-in-bucket measurements in far-field for reflection of aberrated beam reflected

from flat mirror. The calculated points are a Gaussian fit to the data, assuming 100% of the beam in
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This expression can then be used to solve the equation for E:, giving

* * ~~xP-g(CL +J) 1xp ixg(CL + J)1 (62)
E-2 (L) = E~2(0) 2(1+x2) } 2 2(1+x ) 2

where

gII(O)exp{ gCL} 2° (3
J=logj }l()-I 0 (63)

This can be written as
E2 (L)=E 2 (0)y 2 exp{iOB2 } (64)

where the real part is gain and the imaginary part is a Brillouin-induced phase shift. We now consider the
boundary conditions for the ring

E2(0) = rE2 (L)explios1
(65)

OS = k2LR = ( 2 LR / C = (1-O)B)LR / c-XSOoLR / c = 020-xo)OLR I C .

If we substitute this in the equation for the Brillouin amplifier we obtain

020 -x{jSooLR I C-log(1 / r)} = 2nm (66)

or

2nz - 020 (7

{j&OLRIc-log(l/r)} (67)

The first term in the denominator is a mode pulling term and the second is a Brillouin-induced phase
shift. An equation similar to this was proposed by workers at TRW [30]. It emphasizes that the degree of
detuning is determined by the random phase shift around the cavity. In our case, the cavity has an
effective value of 0.019 for r2, and x can have a maximum value of x = 1.98 when #20 = 71.

The boundary condition also gives

1 ,(O~ep /g[I 1(O)- 1 2 (0)]L> 2(0)

r2 x i=log{ x } . (68)72 Il (0) - I2 (0)

I, (0) is approximately given by T lin and x is determined by the above, so 12(0) is determined. By using
this equation we can calculate the threshold power as a function of the random variable 020, which may
vary over ±iFr.
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The threshold {Il(0) - 12(0)} shows a large variation in threshold (Fig. 37). In fact the predicted
variation in threshold is even larger than that observed.
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Fig. 37 - Power transmitted through ring in steady state regime. Lower curve corresponds to case

when cavity mode is at center of Brillouin gain, i.e., 420 = 0; x = 0. Upper curve corresponds to

cavity length such that mode is detuned from resonance, i.e., x = 1.

To a first approximation, the ring can be alternatively considered as a loop where the overlap
parameter is 1 and the feedback coefficient is small. In Fig. 38 we plot the threshold of the ring as a
function of transmission coefficient and overlay this with the threshold of the loop. This shows that the
loop is perhaps a factor 2 higher in threshold. However as discussed earlier, the loop is much less
sensitive to the size of phase shift around the cavity.
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Fig. 38 - Top two traces: Instability threshold for a loop vs transmission, with overlap

factorfo = 1. (Top trace: no gain enhancement; second trace from top: loop With gain

enhancement. Vertical scale is in units of gIL. Lower two traces: Instability threshold for

a ring vs transmission coefficient. Bottom trace: with gain enhancement; second trace

from bottom: without gain enhancement.)
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We note that the model of a ring-SBS scheme treats the system as a resonator, with the output of the
Brillouin amplifier being fed back into itself. This can only be valid in the three-dimensional world if the
cavity can be described as having self-consistent orthogonal modes. This concept suggests that the modes
will become more extended when there are aberrations in the cavity and in turn would predict that the
threshold will rapidly increase. Furthermore, if there are substantial aberrations in a ring cavity (such as
were discussed by TRW workers [30]), then the wavefronts of the input beam after the second pass
through the SBS cell will be substantially different from the wavefronts after the first pass. This also
suggests that interference between the beam on the first and second pass plays a role in determining the
spatial structure of the output. These two issues raise problems when the "ring-SBS" scheme is treated as
a ring resonator, but it is less of a problem if the ring is treated as a particular case of the loop scheme.

RING EXPERIMENTS

Figure 39 shows the experimental arrangement. It is similar to the loop discussed previously, but the
first high-reflectivity mirror is replaced with a 3% reflectivity CaF2 wedge. Both this and the second
high-reflectivity mirror were placed at the focal plane of the respective lenses. This provided a ring that
was slightly larger than the loop described in the earlier experiments. To ensure that the temporal
coherence criterion was met, the cavity length of the laser had to be changed and matched to the ring
length. This was done and the birefringent filter and etalons were adjusted to optimize the performance of
the laser, although the spectral characteristics were not reexamined with the scanning Fabry Perot etalon.

Lens SBS cell Lens

Bearnsplitter X^5}[ls////;/.f ,Mirror

f ^ f H 

Fig. 39- Experimental arrangement for ring SBS

In the ring arrangement, light incident on the second high-reflectivity mirror. is imaged to overlap on
the beamsplitter with the input beam. Alignment consists of adjusting the orientation of the beamsplitter;
this is carried out in the same way as described for the loop.

The ring was initially set to be 200 cm round trip. Figure 40 shows SBS output energy vs input
energy. As in the case of the loop scheme, the results were compared with the case of the single- and two-
focus SBS cases. Comparing this with Fig. 17 shows that the threshold for single- and two-focus SBS are
substantially the same as was observed earlier in the loop experiments. This suggests that the spectral
properties of the laser are similar to those of the earlier experiments.

The threshold energy of the ring was significantly less than in the loop experiments. The ring had a
threshold of 3 mJ compared to 4.8 mJ for the loop threshold.
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Fig. 40- SBS energy vs input energy

We also measured the throughput and SBS powers in a series of experiments. Figure 41 shows
sample traces. The studies showed that the dynamics and typical shape of the SBS and throughput pulses
were very similar to those observed in the loop scheme, but the shot-to-shot variation was much larger
than had been observed in the case of the loop.
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Fig. 41 - Input, SBS, and throughput power showing constant transmitted power
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The throughput power is a measure of the steady state power threshold. This is plotted in Fig. 42 and
compared with the single- and two-focus SBS thresholds. This shows that the ring reduces the threshold
by typically a factor 3 compared with two-focus SBS.
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Fig. 42- Transmitted power as a function of peak input power

We note that the large fluctuations made it difficult to accurately align the ring with the degree of
accuracy observed by workers at TRW, although we had been able to get the necessary accuracy in
alignment routinely when using the loop geometry.

Figure 43 shows the shot-to-shot variation in the threshold power as a function of time. The
maximum threshold is a factor 3 greater than the minimum.

The onset energy is defined in the same way as for the loop scheme. This is plotted in Fig. 44 where it
is compared with the onset energy for single- focus and two-focus SBS. It is comparable with the loop
onset threshold plotted in Fig. 24.

We attempted to determine whether the fluctuations in Fig. 41 were due to changes in the spectrum of
the laser. The throughput power was measured as a function of input power when the laser was operated
in three different ways to vary its spectral properties. It was first operated just above threshold, then
operated well above threshold, and finally operated with the acousto-optic modulator set to allow some
degree of pre-lase, a feature that tends to reduce the spectral bandwidth. These steps had no influence on
the statistics of the SBS output; they supported the hypothesis that the fluctuations were due to the
Brillouin interaction rather than a variation in the lasers spectrum. The data of Fig. 45 show a clear
minimum threshold power of 3 kW and a large spread with the maximum threshold a factor 3 larger than
this.
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Fig. 44- Measured onset energy as defined in Fig. 23
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Fig. 45 -Throughput power plotted vs peak input power. Different symbols indicate the

laser being operated in different ways to influence the laser spectrum. Apart from a

change in the resulting laser power, there was no apparent influence in the statistics of the

5B5 process.

When the ring was varied in length by scanning mirror 2 over 5 cm, there was no apparent change in
the dynamics of the ring, unlike the case of the loop where the modulation was observed at certain critical
lengths. Similarly, when the lens after the SBS cell was translated along the axis of the beam, there was
no systematic variation in the systems performance.

In addition to variations in the threshold power, there was some variation in the pulse shapes.
Occasionally, rapid modulation was observed, as shown in Fig. 46.

The beam quality was also studied. As with the loop scheme, a series of measurements were made of
the input and the SBS beam in the near and far fields. The input beam had a near-diffraction-limited
Gaussian beam in both near and far field. It also had a near-field waist of 0.38 cm and a far-field
divergence of 0.95 mrad, corresponding to 1.4 times the diffraction limit. When this was directed into the
ring, the Brillouin output had a Gaussian profile in near and far fields with a near-field waist of 0.39 cm
and a divergence of 0.97 mrad. When an aberrator was placed in front of the ring, the transmitted beam
broke up into a complex speckle pattern. If the aberrator was double passed using a conventional mirror,
the resulting beam had a divergence of 4 mrad. When the ring was operated, the output had a non-
Gaussian near-field distribution and a far-field distribution that consisted of 80% of the energy in a near-
diffraction-limited Gaussian profile, and the remaining energy in a more highly diverging distribution. In
this respect it was very similar to the output characteristics of the loop, and it was not possible to
discriminate between the fidelity of the two methods. Figures 47 and 48 show the output distributions of
the near and far fields. 
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Fig. 46 - Temporal profile observed on some occasions. There were no recorded differences

in the conditions for which the above were observed and the conditions for Fig. 41.
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Fig. 48 - Far-field profile data for input and SBS beams using ring geometry
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Finally we studied the fidelity of the ring system on a shot by shot basis. The laser was directed into
the ring. The SBS output was returned to a beamsplitter where part was directed onto a monitor and part
was directed through a 2.3-mm diameter pinhole. Figure 49 is a sample of the data. The fraction
transmitted was recorded and was found to fluctuate, with a maximum transmission of more than 50%
observed in approximately 60% of occasions. On some occasions however, the transmission (i.e., fidelity)
dropped to below 30%. These results were obtained on the last few days of the experiment, which
prevented us from investigating how this fluctuation correlated with the fluctuation in the SBS
reflectivity.

CONCLUSIONS

We have obtained SBS in CS2 by using a frequency-narrowed Cr,Tm,Ho:YAG laser operating at
2.12 mm. Both single-focus SBS and threshold reduction by using a loop and ring have been
demonstrated.

A theory of the threshold reduction schemes was developed that described their transient and steady
state behavior. The systems were first described as a set of overlapping Gaussian beams, and correction
factors were calculated to map the problem onto a one-dimensional model that assumed uniform pump
beams.

The theoretical analysis for the two schemes shows that they are each characterized by an initial
transient "instability" regime. In this regime the conjugate beam grows exponentially in time, followed by
a steady state regime where the conjugate intensity depends only on the pump intensity. In the transient
regime the growth rate is approximately proportional to the pump intensity, and the conjugate beam
reaches an observable intensity when the total growth has reached a value of exp(25). This occurs when
the integrated pump energy reaches some fixed value, which we have called the "onset energy." This
onset energy is approximately independent of how far the pump pulse exceeds the threshold. This was
observed experimentally.

The theoretical steady state reflectivity grows rapidly from zero as the input power starts to exceeds
the instability threshold. It then increases in proportion to the input power at higher pump powers. The
slope efficiency tends to 100% and theoretically exceeds 100% close to threshold. Thus if the reflectivity
is measured at high pump powers and linearly extrapolated back to determine the threshold, the result will
be lower than actual instability threshold (see, e.g., Fig. 14).

Considering first the loop scheme, it was found that one key parameter was the phase shift around the
loop AkAL, which needs to be a multiple of 2 Ur to produce a conjugate with a low threshold and smooth
temporal profile. When this condition was not met, the conjugate and transmitted beams were heavily
modulated.

The experimental results agreed well with theory in terms of the onset threshold and the degree of
threshold reduction, which typically was 2.2. One noticeable difference between the loop and
conventional SBS was that the conventional SBS was strongly modulated, presumably resulting from
fluctuations in the initiating noise. In the loop scheme, noise is required to start the process but it is not
required once the process starts.

The ring geometry was found to have almost a factor 2 greater threshold reduction than the loop, in
agreement with the theory. Unlike the loop geometry, the ring was found to suffer from large shot-to-shot
fluctuations in the reflectivity and the fidelity. This was consistent with the theory, which showed that the
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loop would be stable provided the loop length varied by less than a few cm from shot to shot. However,
the ring length needed to be held constant to within one micron to have the same stability in reflectivity.

This sensitivity to variations in length has not been observed by other researchers. One possible
explanation for this is that the ring can also be considered to be a special case of a loop, and in this case
the length sensitivity disappears. This can be expected to happen if losses or aberrations change the
eigenmodes of the ring cavity to have a somewhat larger mode volume, so that the ring cavity has its ring
SBS threshold raised to exceed the threshold it has as a degenerate loop.
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